Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
2.
Cells ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474343

RESUMO

PURPOSE: Chemical eye injury is an acute emergency that can result in vision loss. Neurotrophic keratitis (NK) is the most common long-term manifestation of chemical injury. NK due to alkali burn affects ocular surface health and is one of its most common causes. Here, we established a rabbit model of corneal alkali burns to evaluate the severity of NK-associated changes. MATERIAL METHODS: Alkali burns were induced in NZ rabbits by treating the cornea with (i) a 5 mm circular filter paper soaked in 0.75 N NaOH for 10 s (Mild NK) and (ii) trephination using a guarded trephine (5 mm diameter and 150-micron depth), followed by alkali burn, with a 5 mm circular filter paper soaked in 0.75 N NaOH for 10 s (a severe form of NK). Immediately after, the cornea was rinsed with 10 mL of normal saline to remove traces of NaOH. Clinical features were evaluated on Day 0, Day 1, Day 7, Day 15, and Day 21 post-alkali burn using a slit lamp, Pentacam, and anterior segment optical coherence tomography (AS-OCT). NK-like changes in epithelium, sub-basal nerve plexus, and stroma were observed using in vivo confocal microscopy (IVCM), and corneal sensation were measured using an aesthesiometer post alkali injury. After 21 days, pro-inflammatory cytokines were evaluated for inflammation through ELISA. RESULTS: Trephination followed by alkali burn resulted in the loss of epithelial layers (manifested using fluorescein stain), extensive edema, and increased corneal thickness (550 µm compared to 380 µm thickness of control) evaluated through AS-OCT and increased opacity score in alkali-treated rabbit (80 compared to 16 controls). IVCM images showed complete loss of nerve fibers, which failed to regenerate over 30 days, and loss of corneal sensation-conditions associated with NK. Cytokines evaluation of IL6, VEGF, and MMP9 indicated an increased angiogenic and pro-inflammatory milieu compared to the milder form of NK and the control. DISCUSSION: Using clinical parameters, we demonstrated that the alkali-treated rabbit model depicts features of NK. Using IVCM in the NaOH burn animal model, we demonstrated a complete loss of nerve fibers with poor self-healing capability associated with sub-basal nerve degeneration and compromised corneal sensation. This pre-clinical rabbit model has implications for future pre-clinical research in neurotrophic keratitis.


Assuntos
Queimaduras Químicas , Doenças da Córnea , Ceratite , Coelhos , Animais , Queimaduras Químicas/tratamento farmacológico , Álcalis , Hidróxido de Sódio/uso terapêutico , Córnea , Microscopia Confocal/métodos , Citocinas
3.
Stem Cell Res Ther ; 15(1): 41, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355568

RESUMO

BACKGROUND: Corneal alkali burns can lead to ulceration, perforation, and even corneal blindness due to epithelial defects and extensive cell necrosis, resulting in poor healing outcomes. Previous studies have found that chitosan-based in situ hydrogel loaded with limbal epithelium stem cells (LESCs) has a certain reparative effect on corneal alkali burns. However, the inconsistent pore sizes of the carriers and low cell loading rates have resulted in suboptimal repair outcomes. In this study, 4D bioprinting technology was used to prepare a chitosan-based thermosensitive gel carrier (4D-CTH) with uniform pore size and adjustable shape to improve the transfer capacity of LESCs. METHODS: Prepare solutions of chitosan acetate, carboxymethyl chitosan, and ß-glycerophosphate sodium at specific concentrations, and mix them in certain proportions to create a pore-size uniform scaffold using 4D bioprinting technology. Extract and culture rat LESCs (rLESCs) in vitro, perform immunofluorescence experiments to observe the positivity rate of deltaNp63 cells for cell identification. Conduct a series of experiments to validate the cell compatibility of 4D-CTH, including CCK-8 assay to assess cell toxicity, scratch assay to evaluate the effect of 4D-CTH on rLESCs migration, and Calcein-AM/PI cell staining experiment to examine the impact of 4D-CTH on rLESCs proliferation and morphology. Establish a severe alkali burn model in rat corneas, transplant rLESCs onto the injured cornea using 4D-CTH, periodically observe corneal opacity and neovascularization using a slit lamp, and evaluate epithelial healing by fluorescein sodium staining. Assess the therapeutic effect 4D-CTH-loaded rLESCs on corneal alkali burn through histological evaluation of corneal tissue paraffin sections stained with hematoxylin and eosin, as well as immunofluorescence staining of frozen sections. RESULTS: Using the 4D-CTH, rLESCs were transferred to the alkali burn wounds of rats. Compared with the traditional treatment group (chitosan in situ hydrogel encapsulating rLESCs), the 4D-CTH-rLESC group had significantly higher repair efficiency of corneal injury, such as lower corneal opacity score (1.2 ± 0.4472 vs 0.4 ± 0.5477, p < 0.05) and neovascularization score (5.5 ± 1.118 vs 2.6 ± 0.9618, p < 0.01), and significantly higher corneal epithelial wound healing rate (72.09 ± 3.568% vs 86.60 ± 5.004%, p < 0.01). CONCLUSION: In summary, the corneas of the 4D-CTH-rLESC treatment group were similar to the normal corneas and had a complete corneal structure. These findings suggested that LESCs encapsulated by 4D-CTH significantly accelerated corneal wound healing after alkali burn and can be considered as a rapid and effective method for treating epithelial defects.


Assuntos
Queimaduras Químicas , Quitosana , Lesões da Córnea , Opacidade da Córnea , Ratos , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Quitosana/química , Álcalis/farmacologia , Álcalis/uso terapêutico , Cicatrização , Córnea , Lesões da Córnea/terapia , Opacidade da Córnea/patologia , Células-Tronco/patologia , Hidrogéis/farmacologia
4.
Exp Eye Res ; 238: 109739, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042515

RESUMO

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Assuntos
Infecções Bacterianas , Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Neovascularização Patológica/metabolismo , Lesões da Córnea/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças , Álcalis/toxicidade
5.
Biomater Adv ; 154: 213648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812983

RESUMO

In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.


Assuntos
Queimaduras Químicas , Curcumina , Queimaduras Oculares , Humanos , Animais , Coelhos , Antibacterianos/farmacologia , Queimaduras Químicas/tratamento farmacológico , Preparações de Ação Retardada , Vancomicina , Álcalis , Curcumina/farmacologia , Curcumina/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Portadores de Fármacos
6.
Ocul Surf ; 30: 92-103, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690516

RESUMO

PURPOSE: To test long-term ocular toxicity and analgesic/anti-inflammatory efficacy of two novel ocular formulations of neurokinin 1 receptor (NK1R) antagonist Aprepitant. METHODS: for toxicity studies, two Aprepitant formulations (X and Y) were tested on C57BL/6 N mice. Gold standards were 0.4% Oxybuprocaine, 0.1% Diclofenac, or saline. For efficacy studies, C57BL/6 N mice underwent corneal alkali burn, and then received Aprepitant formulation X, Dexamethasone or saline. Eye-drops were applied 3 times/day for 90 days (toxicity) and 14 days (efficacy). Stromal opacity, corneal epithelial damage, nociception and sensitivity were assessed in vivo. The eye-wiping test and corneal sensitivity were assessed to evaluate analgesic efficacy and nerve function. At the end of the experiments mice were euthanized, and corneas were dissected for immunohistochemistry and RT-PCR analyses. RESULTS: In normal mice, formulation X was not toxic when topically administered for 90 days. Formulation Y was associated with increased leukocyte infiltration in the cornea (p < 0.001). X1 and X2 formulations significantly reduced corneal pain, as Diclofenac and Oxybuprocaine, but did not reduce corneal sensitivity. Formulation Y, instead, was not analgesic at any time point. In the alkali burn model, X1 and X2 formulation enhanced epithelial damage recovery, and reduced inflammation both at day 7 and 14. Moreover, formulation X showed a stronger analgesic effect when compared to the saline and Dexamethasone groups (p < 0.01). Finally, formulation X1 and X2 restored corneal sensitivity by promoting corneal nerve regeneration. CONCLUSIONS: Aprepitant X formulation is a promising candidate for the treatment of pain associated with inflammation of the ocular surface.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Camundongos , Animais , Aprepitanto , Queimaduras Químicas/tratamento farmacológico , Diclofenaco , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Inflamação , Córnea , Dor , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/complicações , Dexametasona , Analgésicos
7.
Cochrane Database Syst Rev ; 5: CD013841, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142550

RESUMO

BACKGROUND: Central venous catheters (CVC) are associated with potentially dangerous complications such as thromboses, pericardial effusions, extravasation, and infections in neonates. Indwelling catheters are amongst the main risk factors for nosocomial infections. The use of skin antiseptics during the preparation for central catheter insertion may prevent catheter-related bloodstream infections (CRBSI) and central line-associated bloodstream infections (CLABSI). However, it is still not clear which antiseptic solution is the best to prevent infection with minimal side effects. OBJECTIVES: To systematically evaluate the safety and efficacy of different antiseptic solutions in preventing CRBSI and other related outcomes in neonates with CVC. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries up to 22 April 2022. We checked reference lists of included trials and systematic reviews that related to the intervention or population examined in this Cochrane Review.  SELECTION CRITERIA: Randomised controlled trials (RCTs) or cluster-RCTs were eligible for inclusion in this review if they were performed in the neonatal intensive care unit (NICU), and were comparing any antiseptic solution (single or in combination) against any other type of antiseptic solution or no antiseptic solution or placebo in preparation for central catheter insertion. We excluded cross-over trials and quasi-RCTs. DATA COLLECTION AND ANALYSIS: We used the standard methods from Cochrane Neonatal. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS: We included three trials that had two different comparisons: 2% chlorhexidine in 70% isopropyl alcohol (CHG-IPA) versus 10% povidone-iodine (PI) (two trials); and CHG-IPA versus 2% chlorhexidine in aqueous solution (CHG-A) (one trial). A total of 466 neonates from level III NICUs were evaluated. All included trials were at high risk of bias. The certainty of the evidence for the primary and some important secondary outcomes ranged from very low to moderate. There were no included trials that compared antiseptic skin solutions with no antiseptic solution or placebo. CHG-IPA versus 10% PI Compared to PI, CHG-IPA may result in little to no difference in CRBSI (risk ratio (RR) 1.32, 95% confidence interval (CI) 0.53 to 3.25; risk difference (RD) 0.01, 95% CI -0.03 to 0.06; 352 infants, 2 trials, low-certainty evidence) and all-cause mortality (RR 0.88, 95% CI 0.46 to 1.68; RD -0.01, 95% CI -0.08 to 0.06; 304 infants, 1 trial, low-certainty evidence). The evidence is very uncertain about the effect of CHG-IPA on CLABSI (RR 1.00, 95% CI 0.07 to 15.08; RD 0.00, 95% CI -0.11 to 0.11; 48 infants, 1 trial; very low-certainty evidence) and chemical burns (RR 1.04, 95% CI 0.24 to 4.48; RD 0.00, 95% CI -0.03 to 0.03; 352 infants, 2 trials, very low-certainty evidence), compared to PI. Based on a single trial, infants receiving CHG-IPA appeared less likely to develop thyroid dysfunction compared to PI (RR 0.05, 95% CI 0.00 to 0.85; RD -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 10 to 50; 304 infants). Neither of the two included trials assessed the outcome of premature central line removal or the proportion of infants or catheters with exit-site infection. CHG-IPA versus CHG-A The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI when applied on the skin of neonates prior to central line insertion (RR 0.80, 95% CI 0.34 to 1.87; RD -0.05, 95% CI -0.22 to 0.13; 106 infants, 1 trial, low-certainty evidence) and CLABSI (RR 1.14, 95% CI 0.34 to 3.84; RD 0.02, 95% CI -0.12 to 0.15; 106 infants, 1 trial, low-certainty evidence), compared to CHG-A. Compared to CHG-A, CHG-IPA probably results in little to no difference in premature catheter removal (RR 0.91, 95% CI 0.26 to 3.19; RD -0.01, 95% CI -0.15 to 0.13; 106 infants, 1 trial, moderate-certainty evidence) and chemical burns (RR 0.98, 95% CI 0.47 to 2.03; RD -0.01, 95% CI -0.20 to 0.18; 114 infants, 1 trial, moderate-certainty evidence). No trial assessed the outcome of all-cause mortality and the proportion of infants or catheters with exit-site infection. AUTHORS' CONCLUSIONS: Based on current evidence, compared to PI, CHG-IPA may result in little to no difference in CRBSI and mortality. The evidence is very uncertain about the effect of CHG-IPA on CLABSI and chemical burns. One trial showed a statistically significant increase in thyroid dysfunction with the use of PI compared to CHG-IPA. The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI and CLABSI when applied on the skin of neonates prior to central line insertion. Compared to CHG-A, CHG-IPA probably results in little to no difference in chemical burns and premature catheter removal. Further trials that compare different antiseptic solutions are required, especially in low- and middle-income countries, before stronger conclusions can be made.


Assuntos
Anti-Infecciosos Locais , Queimaduras Químicas , Cateteres Venosos Centrais , Sepse , Humanos , Lactente , Recém-Nascido , Anti-Infecciosos Locais/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/etiologia , Cateteres Venosos Centrais/efeitos adversos , Clorexidina/efeitos adversos , Sepse/tratamento farmacológico
8.
Biomolecules ; 13(5)2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37238701

RESUMO

PURPOSE: To investigate the anti-inflammatory and anti-angiogenic effects of the bioactive lipid mediator LXA4 on a rat model of severe corneal alkali injury. METHODS: To induce a corneal alkali injury in the right eyes of anesthetized Sprague Dawley rats. They were injured with a Φ 4 mm filter paper disc soaked in 1 N NaOH placed on the center of the cornea. After injury, the rats were treated topically with LXA4 (65 ng/20 µL) or vehicle three times a day for 14 days. Corneal opacity, neovascularization (NV), and hyphema were recorded and evaluated in a blind manner. Pro-inflammatory cytokine expression and genes involved in cornel repair were assayed by RNA sequencing and capillary Western blot. Cornea cell infiltration and monocytes isolated from the blood were analyzed by immunofluorescence and by flow cytometry. RESULTS: Topical treatment with LXA4 for two weeks significantly reduced corneal opacity, NV, and hyphema compared to the vehicle treatment. RNA-seq and Western blot results showed that LXA4 decreased the gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and pro-angiogenic mediators matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGFA). It also induces genes involved in keratinization and ErbB signaling and downregulates immune pathways to stimulate wound healing. Flow cytometry and immunohistochemistry showed significantly less infiltration of neutrophils in the corneas treated with LXA4 compared to vehicle treatment. It also revealed that LXA4 treatment increases the proportion of type 2 macrophages (M2) compared to M1 in blood-isolated monocytes. CONCLUSIONS: LXA4 decreases corneal inflammation and NV induced by a strong alkali burn. Its mechanism of action includes inhibition of inflammatory leukocyte infiltration, reduction in cytokine release, suppression of angiogenic factors, and promotion of corneal repair gene expression and macrophage polarization in blood from alkali burn corneas. LXA4 has potential as a therapeutic candidate for severe corneal chemical injuries.


Assuntos
Queimaduras Químicas , Opacidade da Córnea , Ratos , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Fator A de Crescimento do Endotélio Vascular , Álcalis/efeitos adversos , Hifema , Transcriptoma , Ratos Sprague-Dawley , Neovascularização Patológica , Citocinas/metabolismo , Opacidade da Córnea/induzido quimicamente , Opacidade da Córnea/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
9.
Exp Eye Res ; 231: 109466, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059215

RESUMO

Corneal alkali burn (AB) is a blindness-causing ocular trauma commonly seen in clinics. An excessive inflammatory reaction and stromal collagen degradation contribute to corneal pathological damage. Luteolin (LUT) has been studied for its anti-inflammatory effects. In this study, the effect of LUT on cornea stromal collagen degradation and inflammatory damage in rats with corneal alkali burn was investigated. After corneal alkali burn, rats were randomly assigned to the AB group and AB + LUT group and received an injection of saline and LUT (200 mg/kg) once daily. Subsequently, corneal opacity, epithelial defects, inflammation and neovascularization (NV) were observed and recorded on Days 1, 2, 3, 7 and 14 post-injury. The concentration of LUT in ocular surface tissues and anterior chamber, as well as the levels of collagen degradation, inflammatory cytokines, matrix metalloproteinases (MMPs) and their activity in the cornea were detected. Human corneal fibroblasts (HCFs) were co-cultured with interleukin (IL)-1ß and LUT. Cell proliferation and apoptosis were assessed by CCK-8 assay and flow cytometry respectively. Measurement of hydroxyproline (HYP) in culture supernatants was used to quantify the amount of collagen degradation. Plasmin activity was also assessed. ELISA or real-time PCR was used to detect the production of matrix metalloproteinases (MMPs), IL-8, IL-6 and monocyte chemotactic protein (MCP)-1. Furthermore, the immunoblot method was used to assess the phosphorylation of mitogen-activated protein kinases (MAPKs), transforming growth factor-ß-activated kinase (TAK)-1, activator protein-1 (AP-1) and inhibitory protein IκB-α. At last, immunofluorescence staining helped to develop nuclear factor (NF)-κB. LUT was detectable in ocular tissues and anterior chamber after intraperitoneal injection. An intraperitoneal injection of LUT ameliorated alkali burn-elicited corneal opacity, corneal epithelial defects, collagen degradation, NV, and the infiltration of inflammatory cells. The mRNA expressions of IL-1ß, IL-6, MCP-1, vascular endothelial growth factor (VEGF)-A, and MMPs in corneal tissue were downregulated by LUT intervention. And its administration reduced the protein levels of IL-1ß, collagenases, and MMP activity. Furthermore, in vitro study showed that LUT inhibited IL-1ß-induced type I collagen degradation and the release of inflammatory cytokines and chemokines by corneal stromal fibroblasts. LUT also inhibited the IL-1ß-induced activation of TAK-1, mitogen-activated protein kinase (MAPK), c-Jun, and NF-κB signaling pathways in these cells. Our results demonstrate that LUT inhibited alkali burn-stimulated collagen breakdown and corneal inflammation, most likely by attenuating the IL-1ß signaling pathway. LUT may therefore prove to be of clinical value for treating corneal alkali burns.


Assuntos
Queimaduras Químicas , Opacidade da Córnea , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Álcalis/toxicidade , Interleucina-6/metabolismo , Córnea/metabolismo , Citocinas/metabolismo , Neovascularização Patológica/metabolismo , Colágeno Tipo I/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Opacidade da Córnea/metabolismo , Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo
10.
Stem Cells ; 41(6): 592-602, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061809

RESUMO

Corneal alkali burns cause extensive damage not only to the cornea but also to the intraocular tissues. As an anti-inflammatory therapy, subconjunctival administration of mesenchymal stem cells (MSCs) for corneal protection after corneal alkali burn has been explored. Little evidence demonstrates the potential of subconjunctival MSCs delivery in protecting the post-burn intraocular tissues. This study aimed to evaluate the therapeutic efficacy of subconjunctival injection of human placental (hP)-MSCs in protecting against ocular destruction after the burn. hP-MSCs were subconjunctivally administered to C57/BL mice after corneal alkali burn. Western blot of iNOS and CD206 was performed to determine the M1 and M2 macrophage infiltration in the cornea. Infiltration of inflammatory cells in the anterior uvea and retina was analyzed by flow cytometry. The TUNEL assay or Western blot of Bax and Bcl2 was used to evaluate the anti-apoptotic effects of MSCs. MSCs could effectively facilitate cornea repair by suppressing inflammatory cytokines IL-1ß, MCP-1, and MMP9, and polarizing CD206 positive M2 macrophages. Anterior uveal and retinal inflammatory cytokines expression and inflammatory cell infiltration were inhibited in the MSC-treated group. Reduced TUNEL positive staining and Bax/Bcl2 ratio indicated the anti-apoptosis of MSCs. MSC-conditioned medium promoted human corneal epithelial cell proliferation and regulated LPS-stimulated inflammation in RAW 264.7 macrophages, confirming the trophic and immunoregulatory effects of MSCs. Our findings demonstrate that subconjunctival administration of MSCs exerted anti-inflammatory and anti-apoptotic effects in the cornea, anterior uvea, and retina after corneal alkali burn. This strategy may provide a new direction for preventing post-event complications after corneal alkali burn.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Células-Tronco Mesenquimais , Gravidez , Camundongos , Feminino , Humanos , Animais , Queimaduras Químicas/tratamento farmacológico , Modelos Animais de Doenças , Álcalis/farmacologia , Álcalis/uso terapêutico , Proteína X Associada a bcl-2 , Placenta , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/terapia , Córnea , Inflamação , Anti-Inflamatórios , Citocinas/farmacologia
11.
Eur J Pediatr ; 182(6): 2591-2596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36935468

RESUMO

Ingestion of caustic agents by children is a serious health issue that can affect the patient for the rest of his life. The role of sucralfate in preventing stricture caused by caustic agents is controversial, and limited studies have been conducted in this field. We aimed to investigate the effect of sucralfate on preventing esophageal stricture in children. Sixty children with mean age of 36.69 ± 20.50 months and grade II B esophageal burns due to ingestion of caustic agents were enrolled in the study. In the intervention group, in addition to the usual treatment, sucralfate was administered orally at a dose of 80 mg/kg every 2 h for 3 days. For the control group, only the usual treatment was prescribed. Stricture development was compared between groups based on endoscopic and radiologic findings. Of the 60 patients enrolled in the study, 53 were examined. The incidence of esophageal stricture in the intervention group was significantly lower than in the control group (37% versus 67%, P-value = 0.042). In addition, the odds of esophageal stricture after sucralfate intervention was significantly reduced after adjustment for potential confounders (OR = 0.198, P-value = 0.031).  Conclusions: The results of this study showed that sucralfate may reduce the development of esophageal stricture in children when used to manage IIB esophageal burns due to ingestion of caustic agents. What is Known: • Ingestion of caustic agents by children is a serious health issue that can affect the patient for the rest of his life. • The role of sucralfate in preventing stricture caused by caustic agents is controversial and limited studies have been conducted in this field. What is New: • It seems that sucralfate significantly reduces the incidence of esophageal stricture following the ingestion of caustic agents in children compared to the control group. • We believe that the prognosis may be improved and the risk of stricture formation may be reduced with high doses of sucralfate therapy in grade IIB esophageal injury.


Assuntos
Queimaduras Químicas , Cáusticos , Estenose Esofágica , Humanos , Criança , Lactente , Pré-Escolar , Estenose Esofágica/induzido quimicamente , Estenose Esofágica/prevenção & controle , Cáusticos/toxicidade , Sucralfato/uso terapêutico , Constrição Patológica/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/etiologia , Ingestão de Alimentos
12.
Biomater Sci ; 11(7): 2531-2542, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779571

RESUMO

A simple but novel ophthalmic solution based on two approved drugs was developed to reposition existing drugs to treat new diseases. This nanoformulation was developed using the phytochemical drug glycyrrhizin as an amphiphilic nanocarrier to micellarly solubilize empagliflozin (EMP), an oral drug that is widely used to control high blood glucose but has poor water solubility. This novel nanoformulation, which we designated the EMP@glycymicelle ophthalmic solution, was obtained using a simple preparation process. The resulting solution was a clear solution with an EMP encapsulation efficiency of 97.91 ± 0.50%, a small glycymicelle size of 6.659 ± 0.196 nm, and a narrow polydispersity index of 0.226 ± 0.059. The optimized formulation demonstrated that EMP was soluble in water up to 18 mg ml-1 because of its encapsulation within glycymicelles. The EMP@glycymicelle ophthalmic solution exhibited excellent characteristics, including good storage stability, fast in vitro release profiles, improved in vitro antioxidant activity, and no ocular irritation. Ocular permeation evaluation showed that the EMP@glycymicelle ophthalmic solution had strong ocular permeation of EMP, and it reached the posterior segment of mouse eyes after ocular topical administration. The treatment efficacy evaluation showed that the EMP@glycymicelle ophthalmic solution had a significant effect against corneal alkali burns in mice, prompting corneal wound healing, recovering corneal sensitivity, reducing corneal haze, and relieving corneal NV invasion. The mechanism of inhibiting HMGB1 signaling was involved in this strong treatment effect. These results indicated that the EMP@glycymicelle ophthalmic solution provided a new concept of drug repurposing and a promising ocular system for the nano-delivery of EMP with significantly improved in vivo profiles.


Assuntos
Queimaduras Químicas , Ácido Glicirrízico , Camundongos , Animais , Ácido Glicirrízico/farmacologia , Queimaduras Químicas/tratamento farmacológico , Soluções Oftálmicas/uso terapêutico , Álcalis
13.
Medicina (Kaunas) ; 59(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837524

RESUMO

Background and Objectives: Ocular alkaline burn is a clinical emergency that can cause permanent vision loss due to limbal stem cell deficiency and corneal neovascularization (CNV). Although the basic pathogenetic mechanisms are considered to be acute oxidative stress and corneal neovascularization triggered by inflammation, the underlying intracellular mechanisms have not been clearly elucidated. The aim of this study was to investigate the role of endoplasmic reticulum (ER) stress on inflammation and neovascularization, and the effect of the ER stress inhibitor salubrinal (SLB), as a novel treatment in a corneal alkaline burn model in rats. Methods: Chemical burns were created by cautery for 4 s using a rod coated with 75% silver nitrate and 25% potassium nitrate in the corneal center for the corneal neovascularization (CNV) model. Twenty-eight Wistar albino rats were divided into four groups: SHAM, CNV, CNV + SLB, and CNV + bevacizumab (BVC). After the CNV model was applied to the right eye, a single subconjunctival dose (0.05 mL) of 1 mg/kg salubrinal was injected into both eyes in the CNV + SLB group. A total of 1.25 mg/mL of subconjunctival BVC was administered to the CNV + BVC group. Fourteen days after experimental modeling and drug administration, half of the globes were placed in liquid nitrogen and stored at -20 °C until biochemical analysis. The remaining tissues were collected and fixed in 10% buffered formalin for histopathological and immunohistochemical analysis. Three qualitative agents from three different pathways were chosen: TNFR for inflammation, endothelial nitric oxide synthase (e-NOS) for vascular endothelial growth factor (VEGF)-mediated vascular permeability, and caspase-3 for cellular apoptosis. Results: Significantly lower caspase-3 and eNOS levels were detected in the CNV + SLB and CNV + BVC groups than in the CNV group. Additionally, histopathological evaluation revealed a significant decrease in neovascularization, inflammatory cell infiltration, and fibroblast activity in the CNV + SLB and CNV + BVC groups. The endoplasmic reticulum stress inhibitor, salubrinal, administered to the treatment group, attenuated apoptosis (caspase-3) and inflammation (e-NOS). In the control group (left eyes of the SLB group), salubrinal did not have a toxic effect on the healthy corneas. Conclusion: The ER stress pathway plays an important role in angiogenesis after alkaline corneal burns, and treatment with SLB modulates this pathway, reducing caspase-3 and eNOS levels. Further studies are needed to understand the molecular mechanisms altered by SLB-mediated therapy. The fact that more than one mechanism plays a role in the pathogenesis of CNV may require the use of more than one molecule in treatment. SLB has the potential to affect multiple steps in CNV pathogenesis, both in terms of reducing ER stress and regulating cellular homeostasis by inhibiting the core event of integrated stress response (ISR). Therefore, it can be used as a new treatment option and as a strengthening agent for existing treatments. Although blockade of intracellular organelle stress pathways has shown promising results in experimental studies, more in-depth research is needed before it can be used in routine practice. To the best of our knowledge, this study is the first to report the role of ER stress in corneal injury.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Animais , Ratos , Neovascularização da Córnea/tratamento farmacológico , Caspase 3 , Fator A de Crescimento do Endotélio Vascular , Óxido Nítrico Sintase Tipo III , Ratos Wistar , Bevacizumab/uso terapêutico , Inflamação/complicações , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Modelos Animais de Doenças
14.
Int Immunopharmacol ; 116: 109680, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739832

RESUMO

Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1ß, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Opacidade da Córnea , Queimaduras Oculares , Ceratite , Camundongos , Animais , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Álcalis/efeitos adversos , Álcalis/metabolismo , Córnea , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Lesões da Córnea/metabolismo , Macrófagos/metabolismo , Ceratite/induzido quimicamente , Ceratite/tratamento farmacológico , Inflamação/metabolismo , Opacidade da Córnea/complicações , Opacidade da Córnea/metabolismo , Opacidade da Córnea/patologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças
15.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614177

RESUMO

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Animais , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Soluções Oftálmicas/farmacologia , Álcalis/farmacologia , Pseudópodes/metabolismo , Córnea/metabolismo , Macrófagos/metabolismo , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/metabolismo , Modelos Animais de Doenças
16.
Int J Pharm ; 631: 122468, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36503038

RESUMO

Ocular chemical burns are prevalent injuries that must have immediate and effective treatment to avoid complications. Aiming to improve bioavailability and efficacy, a poloxamer-based thermoresponsive in-situ gelling system containing hyaluronic acid and indomethacin was developed. Formulations with different polymeric proportions were screened through rheological measurements resulting in an optimized system (F2) with gelling temperature of 34.2 ± 0.11 °C. Its maximum viscosity varied from 77.33 mPa (25 °C) to 82.95 mPa (34 °C) following a non-Newtonian profile and a pH of 6.86 ± 0.01. No incompatibilities were found after infrared analysis. Polarized light microscopy and cryo-transmission electron microscopy have demonstrated micelles of nano-sized dimensions (21.86 nm) with indomethacin entrapped in the core, forming a polymeric network under heating. In vitro tests revealed a cumulative release of 59.75 ± 3.17 % up to 24 h under a sustained release profile. Results from HET-CAM assay indicated that F2 was well tolerated. Corneal wound healing was significantly faster in animals treated with F2 compared to a commercial formulation and an untreated group. These findings suggests that F2 could be an efficient system to delivery drugs into the ocular surface improving wound healing.


Assuntos
Queimaduras Químicas , Indometacina , Animais , Ácido Hialurônico , Queimaduras Químicas/tratamento farmacológico , Géis , Poloxâmero
17.
Nat Commun ; 13(1): 7371, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450767

RESUMO

Chemical injuries to the eye are emergencies with limited acute treatment options other than prompt irrigation and can cause permanent vision loss. We developed a perfluorodecalin-based supersaturated oxygen emulsion (SSOE) to topically deliver high concentration of oxygen to the eye. SSOE is manufactured in hyperbaric conditions and stored in a ready-to-use canister. Upon dispensation, SSOE rapidly raises partial oxygen pressure 3 times over atmospheric level. SSOE is biocompatible with human corneal cells and safe on mouse eyes in vivo. A single topical application of SSOE to the eye after alkali injury significantly promotes corneal epithelial wound healing, decreases anterior chamber exudation, and reduces optical opacity and cataract formation in mice. SSOE treatment reduces intraocular hypoxia, cell death, leukocyte infiltration, production of inflammatory mediators, and hypoxia-inducible factor 1-alpha signaling, thus hastening recovery of normal tissue integrity during the wound healing process. Here, we show that SSOE is an effective topical therapeutic in the acute treatment of ocular chemical injuries.


Assuntos
Queimaduras Químicas , Fluorocarbonos , Humanos , Animais , Camundongos , Emulsões , Queimaduras Químicas/tratamento farmacológico , Oxigênio
18.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233018

RESUMO

Inflammation is the main cause of corneal and retinal damage in an ocular alkali burn (OAB). The aim of this study was to investigate the effect of tauroursodeoxycholic acid (TUDCA) on ocular inflammation in a mouse model of an OAB. An OAB was induced in C57BL/6j mouse corneas by using 1 M NaOH. TUDCA (400 mg/kg) or PBS was injected intraperitoneally (IP) once a day for 3 days prior to establishing the OAB model. A single injection of Infliximab (6.25 mg/kg) was administered IP immediately after the OAB. The TUDCA suppressed the infiltration of the CD45-positive cells and decreased the mRNA and protein levels of the upregulated TNF-α and IL-1ß in the cornea and retina of the OAB. Furthermore, the TUDCA treatment inhibited the retinal glial activation after an OAB. The TUDCA treatment not only ameliorated CNV and promoted corneal re-epithelization but also attenuated the RGC apoptosis and preserved the retinal structure after the OAB. Finally, the TUDCA reduced the expression of the endoplasmic reticulum (ER) stress molecules, IRE1, GRP78 and CHOP, in the retinal tissues of the OAB mice. The present study demonstrated that the TUDCA inhibits ocular inflammation and protects the cornea and retina from injury in an OAB mouse model. These results provide a potential therapeutic intervention for the treatment of an OAB.


Assuntos
Queimaduras Químicas , Animais , Apoptose , Queimaduras Químicas/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Inflamação/tratamento farmacológico , Infliximab/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , RNA Mensageiro , Hidróxido de Sódio/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
19.
Exp Eye Res ; 225: 109265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36206861

RESUMO

Corneal neovascularization can cause devastating consequences including vision impairment and even blindness. Corneal inflammation is a crucial factor for the induction of corneal neovascularization. Current anti-inflammatory approaches are of limited value with poor therapeutic effects. Therefore, there is an urgent need to develop new therapies that specifically modulate inflammatory pathways and inhibit neovascularization in the cornea. The interaction of chemokines and their receptors plays a key role in regulating leukocyte migration during inflammatory response. CXCR3 is essential for mediating the recruitment of activated T cells and microglia/macrophages, but the role of CXCR3 in the initiation and promotion of corneal neovascularization remains unclear. Here, we showed that the expression of CXCL10 and CXCR3 was significantly increased in the cornea after alkali burn. Compared with WT mice, CXCR3-/- mice exhibited significantly increased corneal hemangiogenesis and lymphangiogenesis after alkali burn. In addition, exaggerated leukocyte infiltration and leukostasis, and elevated expression of inflammatory cytokines and angiogenic factor were also found in the corneas of CXCR3-/- mice subjected to alkali burn. With bone marrow (BM) transplantation, we further demonstrated that the deletion of CXCR3 in BM-derived leukocytes plays a key role in the acceleration of alkali burn-induced corneal neovascularization. Taken together, our results suggest that upregulation of CXCR3 does not exhibit its conventional action as a proinflammatory cytokine but instead serves as a self-protective mechanism for the modulation of inflammation and maintenance of corneal avascularity after corneal alkali burn.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Químicas/tratamento farmacológico , Álcalis/toxicidade , Queimaduras Oculares/tratamento farmacológico , Lesões da Córnea/metabolismo , Córnea/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
20.
Curr Eye Res ; 47(12): 1578-1589, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259508

RESUMO

PURPOSE: To compare the therapeutic effects of different forms of nintedanib ophthalmic preparations on neovascularization corneal alkali burns in rats. METHODS: Forty rat models of left eye corneal alkali burns were constructed, and the five groups (N = 8) were treated with normal saline, dexamethasone ointment (dexamethasone), 0.2% nintedanib aqueous solution and nintedanib nano thermoreversible hydrogel (NNTH). A slit lamp microscope was used to observe the area of neovascularization. The levels of the inflammatory factors were detected by ELISA. HE staining was performed on the rat corneas. Vascular endothelial growth factor (VEGFA) was detected by immunohistochemistry, and the expression of corneal VEGFA and CD31 was detected by western blotting. An MTT assay was performed to detect the cytotoxicity of nintedanib on human corneal epithelial cells (HCECs) and human umbilical vein vascular endothelial cells (HUVECs). Cell migration was detected by a cell scratch assay, and the proportion of apoptotic cells was detected by Annexin/PI double staining. Immunofluorescence and western blotting were performed to detect the protein expression of VEGFA and CD31. RESULTS: NNTH had a stronger inhibitory effect on corneal neovascularization (CNV) in alkali-burned rats while reducing the level of inflammatory factors. NNTH had a longer drug duration of release than nanoformulations in vitro. Nintedanib at low concentrations (<8 µM) had no significant cytotoxicity to HCECs but significantly induced apoptosis and inhibited the expression of VEGFA and CD31 and the migration of HUVECs. CONCLUSIONS: Nanomorphic thermoreversible hydrogel is superior among the nintedanib ophthalmic preparations, showing better inhibition of CNV in alkali-burned eyeballs and it blocked the migration and proangiogenic ability of HUVECs.


Assuntos
Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Humanos , Animais , Queimaduras Químicas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hidrogéis/farmacologia , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Neovascularização Patológica/metabolismo , Células Endoteliais da Veia Umbilical Humana , Álcalis/toxicidade , Dexametasona/farmacologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...